首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6383篇
  免费   1155篇
  国内免费   2308篇
  2024年   10篇
  2023年   261篇
  2022年   277篇
  2021年   407篇
  2020年   450篇
  2019年   609篇
  2018年   444篇
  2017年   446篇
  2016年   422篇
  2015年   369篇
  2014年   446篇
  2013年   491篇
  2012年   312篇
  2011年   390篇
  2010年   288篇
  2009年   445篇
  2008年   394篇
  2007年   431篇
  2006年   440篇
  2005年   356篇
  2004年   238篇
  2003年   256篇
  2002年   214篇
  2001年   172篇
  2000年   194篇
  1999年   151篇
  1998年   123篇
  1997年   91篇
  1996年   81篇
  1995年   79篇
  1994年   87篇
  1993年   61篇
  1992年   57篇
  1991年   49篇
  1990年   52篇
  1989年   45篇
  1988年   26篇
  1987年   35篇
  1986年   31篇
  1985年   27篇
  1984年   14篇
  1983年   8篇
  1982年   19篇
  1981年   6篇
  1980年   11篇
  1979年   5篇
  1978年   6篇
  1976年   3篇
  1973年   3篇
  1958年   4篇
排序方式: 共有9846条查询结果,搜索用时 31 毫秒
1.
Patterns generated from ecological surveys are rarely tested in similar habitats to assess the accuracy of predictions. Testing empirically derived predictions provides a strong tool for establishing the consistency of general patterns in ecology. We test the consistency of beetle community associations with habitat complexity in open canopy forests and make both community and morphospecies-level comparisons with results from a previous study. We use Normalized Difference Vegetation Indices (NDVIs) from remote sensing as a surrogate for habitat complexity. The positive relationships between NDVIs and site-based beetle species richness and abundance were consistent in open canopy forests both south and north of Sydney, Australia. NDVIs were also useful for predicting differences in beetle composition in open canopy forests. Taxon-specific responses to NDVI differences in 'southern forests' were very similar to responses in 'northern forests', most likely reflecting beetle trophic roles. This study shows that NDVIs can be used as rapid biodiversity indicators, when integrated with identified faunal responses to vegetation structure, provided that the lower vegetation strata may be measured by remote sensing.  相似文献   
2.
3.
Over the past decade, dramatic declines in frog populations have been noticed worldwide. To examine this decline, monitoring frogs is becoming increasingly important. Compared to traditional field survey methods, recent advances in acoustic sensor technology have greatly extended spatial and temporal scales for monitoring animal populations. In this paper, we examine the problem of monitoring frog populations by analysing acoustic sensor data, where the population is reflected by community calling activity and species richness. Specifically, a novel acoustic event detection (AED) algorithm is first proposed to filter out those recordings without frog calls. Then, multi-label learning is used to classify each individual recording with six acoustic features: linear predictive coding coefficients, Mel-frequency cepstral coefficients, linear-frequency cepstral coefficients, acoustic complexity index, acoustic diversity index, and acoustic evenness index. Next, frog community calling activity and species richness are estimated by accumulating the results of AED and multi-label learning, respectively. Finally, ordinary least squares regression (OLS) is conducted to reveal the relationship between frog populations (frog calling activity and species richness) and weather variables (maximum temperature and rainfall). Experimental results demonstrate that our proposed intelligent system can significantly facilitate the effort to estimate frog community calling activity and species richness with comparable accuracies. The statistical results of OLS indicate that rainfall pattern has a lagged impact on frog community calling activity (significant in the first day after rainy day) and species richness (significant in the fourth day after rainy day). Temperature is shown to affect species richness but is less likely to change calling activity.  相似文献   
4.
Species loss leads to community closure   总被引:1,自引:0,他引:1  
Global extinction of a species is sadly irreversible. At a local scale, however, extinctions may be followed by re-invasion. We here show that this is not necessarily the case and that an ecological community may close its doors for re-invasion of species lost from it. Previous studies of how communities are assembled have shown that there may be rules for that process and that limitations are set to the order by which species are introduced and put together. Instead of focusing on the assembly process we randomly generated simple competitive model communities that were stable and allowed for two to 10 coexisting species. When a randomly selected single species was removed from the community, the cascading species loss was recorded and frequently the resulting community was more than halved. Cascading extinctions have previously been recorded, but we here show that the relative magnitude of the cascade is dependent on community size (and not only trophic structure) and that the reintroduction of the original species lost often is impossible. Hence, species loss does not simply leave a void potentially refilled, but permanently alters the entire community structure and consequently the adaptive landscape for potential re-invaders.  相似文献   
5.
During their 120 to 165 million years of isolation, the flora and fauna of Madagascar evolved, to a large extent, independently of the African mainland.1 In contrast to other oceanic islands, Madagascar is large enough to house the major components of tropical ecosystems, allowing tests of evolutionary hypotheses on the level of complete communities. Taking lemurs, the primates of Madagascar, as an example, evolutionary hypotheses correctly predict the organization of their community structure with respect to ecological correlates. Lemur social systems and their morphological correlates, on the other hand, deviate in some respects from those of other primates. Apparently, lemur social systems are influenced by several selection pressures that are weak or rare in other primates. These include variable activity patterns and avoidance of infanticide. The interspecific variation in lemur social systems therefore offers a unique opportunity for a comprehensive study of the determinants of primate social systems.  相似文献   
6.
Ants are dominant in tropical forests and many species nest in hollow cavities. The manner in which species are vertically stratified in these complex habitats is not known, with lack of nest sites being proposed to limit ant populations. Here, we assess ant community stratification and nest site limitation in a lowland rainforest in New Guinea using experimental addition of artificial bamboo nests of two cavity sizes (small: ~12 mm large: ~32 mm diameter) placed at ground level, in the understorey, and in the canopy. We also conducted a pilot experiment to test the utility of nest translocation. Nests were checked for occupancy after 10 weeks and half of the occupied nests were then translocated between forest plots, while keeping same vertical position. Occupancy of small nests was much higher in the understorey and canopy than at ground level (~75% vs. ~25%). Translocation was successful, as a majority of nests was inhabited by the same species before and after translocation and there was no impact of translocation to a different plot compared to the control, except for a reduction in colony size at ground level. Our experiment demonstrates a vertical stratification in community composition of ants nesting in hollow dead cavities and shows that these ants are more nest site limited in the higher strata than at ground level. Use of small artificial cavities has great potential for future experimental studies, especially for those focused on arboreal ants, as occupancy is high and translocation does not negatively affect their colony size. Abstract in Tok Pisin is available with online material.  相似文献   
7.
Among the 19 non-native species of marine invertebrates which have invaded the Venice Lagoon and have established populations, Ruditapes philippinarum, deliberately introduced in 1983, is surely the most successful species. According to the hypothesis that alien species invasion could be favoured by an altered ecological, chemical or physical state of the system induced by anthropogenic disturbance, R. philippinarum turned out to be ‘the right species at the right moment’. By comparing historical data (1968, 1985, 1990) with 1999 data, changes in macrobenthic community, in particular bivalve molluscs, of the lagoon induced by R. philippinarum introduction and subsequent clam exploiting activity were assessed. It has been possible to describe a sharp reduction, both in terms of distribution area and density, of all other filter feeder bivalves. Moreover, by using the clearance rate of the most abundant bivalve species in 1990 and 1999 (Cerastoderma glaucum and R. philippinarum, respectively), it was possible to estimate that the filtration capacity, expressed as l h−1 m−2, has more than doubled. This has altered the functioning of the ecosystem, resulting in a stronger benthic–pelagic coupling. In this context, R. philippinarum attains control of the system. Considering all this, it is possible to state that the Venice Lagoon ecosystem has entered into a new state, probably more resistant but less resilient, with implications for future management choices.  相似文献   
8.
An Environmental Assessment (EA) is one of the steps within the Environmental Impact Assessment process. Birds are often used in EA to help decision makers evaluate potential human impacts from proposed development activities. A “sensitivity to human disturbance” index, created by Parker III et al. (1996) for all Neotropical species, is commonly considered an ecological indicator. However, this parameter was created subjectively and, for most species, there have been no rigorous field test to validate its effectiveness as such. Therefore, in this study, we aim to: (1) evaluate if, at the local scale, birds from forest patches in a human-modified landscape (HML) may differ in sensitivity from Parker's sensitivity classification; (2) evaluate the effectiveness of the species richness value at each sensitivity level as an ecological indicator; (3) gather information on how often and in which manner Parker's classification has been used in EA. To do so, bird sampling was performed in eight forest patches in a HML over one year. Then, we created a local sensitivity to disturbance using information about threat, endemism, spatial distribution and relative abundance of all species in the study area. We found that 37% of the forest birds showed different local sensitivity levels when compared with Parker's classification. Our results show that only the richness of high-sensitivity species from our local classification fitted the ecological indicator assumptions helping the environmental conditions evaluation of the studied patches. We conclude that species richness of each Parker's bird sensitivity levels do not necessarily perform as an ecological indicator at the local scale, and particularly in HML. Nevertheless, Parker's Neotropical bird sensitivity classification was used in 50% of EA we reviewed. In these, 76% assumed that it was an accurate ecological indicator of the local forest conditions for birds. The lack of clear criteria used in Parker's classification allows diverse interpretations by ornithologists, and there is no agreement about the ecological meaning of each sensitivity level and what environmental conditions each level may indicate of. Therefore, the use of Parker's classification in EA may jeopardize accurate interpretations of proposed anthropogenic impacts. Furthermore, because a bird species’ sensitivity often varies between locations, we argue that Parker's generalized classification of bird sensitivity should not be used as an indicator of forest environmental conditions in EA throughout HMLs in Neotropics. Rather, local bird ecological indices should be explored, otherwise, erroneous predictions of the anthropogenic impacts will continue to be common.  相似文献   
9.
Since it was first detected in 1999, West Nile virus (WNV) quickly spread, becoming the dominant vector-borne disease in North America. Sometimes fatal to humans, WNV is even more widespread among birds, with hundreds of species known to be susceptible to WNV infection in North America alone. However, despite considerable mortality and local declines observed in American crows (Corvus brachyrhynchos), there has been little evidence of a large regional association between WNV susceptibility and population declines of any species. Here we demonstrate a correlation between susceptibility to WNV measured by large-scale testing of dead birds and two indices of overall population change among bird species following the spread of WNV throughout California. This result was due primarily to declines in four species of Corvidae, including all species in this family except common ravens (Corvus corax). Our results support the hypothesis that susceptibility to WNV may have negative population consequences to most corvids on regional levels. They also provide confirmation that dead animal surveillance programs can provide important data indicating populations most likely to suffer detrimental impacts due to WNV.  相似文献   
10.
Aim Deep‐sea hydrothermal vents have now been reported along all active mid‐ocean ridges and back‐arc basins, but the boundaries of biogeographic entities remain questionable owing to methodological issues. Here we examine biogeographic patterns of the vent fauna along the East Pacific Rise (EPR) and determine the relative roles of regional and local factors on the distribution of biodiversity associated with mussel beds along a poorly explored zone, the southern EPR (SEPR). Location East Pacific Rise. Methods A species list of macrobenthic invertebrates along the EPR was compiled from the literature and supplemented with data recovered during the French research cruise BIOSPEEDO carried out in 2004 along the SEPR. Biogeographic patterns were assessed by combining the identification of morphological species with a molecular barcoding approach. A multivariate regression tree (MRT) analysis was performed to identify any geographic breaks, and an empirical distribution of species richness was compared with predictions provided by a mid‐domain effect model. Macrofaunal community structure associated with mussel beds along the SEPR was analysed in relation to environmental factors using cluster and canonical redundancy analyses. Results Sequencing of the cytochrome c oxidase subunit I gene revealed the occurrence of several cryptic species complexes along the EPR, with the equator separating the southern and northern clades. Furthermore, during the BIOSPEEDO cruise at least 10 still unnamed species were collected between 7°25′ S and 21°33′ S. The shift in community structure identified by MRT analysis was located south of 17°34′ S or south of 13°59′ S, depending on the data used, suggesting that the southern part of the SEPR (17°25′–21°33′ S) constitutes a biogeographic transition zone in the vent fauna along the EPR. At a regional scale, latitude combined with the type of venting was significantly correlated with the community structure associated with mussel beds. Main conclusions Together, the molecular data, in situ observations, and the distribution of species suggest that the high diversity of vent fauna species presently observed between 17°25′ S and 21°33′ S is probably a result of the overlap of several distinct biogeographic provinces. We argue that this area thus constitutes a biogeographic vent fauna transition zone along the EPR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号